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Summary

A stochastic model is developed to estimate porosity ( ) and 

water saturation (Sw) using multiple sources of information,

including borehole  and Sw measurements, seismic P- and S-

wave travel time, and inverted electrical conductivity ( ).

Within the stochastic framework, both reservoir parameters 

and geophysical attributes at unsampled locations in the 

interwell volumes are considered as random variables and are 

estimated simultaneously by conditioning to available data.

The focus of the inversion process is not on finding a best-

fitting solution of the unknown parameters as with

conventional methods, but rather on sampling from the joint 

probability density function of the unknowns. From the

samples, various statistics of each variable can be inferred, 

such as mean, variance, confidence intervals, and even

probability density functions. A synthetic case study based on

well log data is presented. Results show that the stochastic 

inverse provides not only overall better estimates of  and Sw

but also information about uncertainty in the estimation that 

cannot be obtained using conventional methods. 

Introduction

Conventional methods for reservoir parameter estimation 

using multiple sources of geophysical data include two major

steps. First, each type of geophysical measurements is 

inverted in isolation to produce an image of geophysical

properties. Then the various properties are combined to 

estimate reservoir parameters based on petrophysical or rock 

physical models obtained from borehole data. This approach

has limitations due to the inability to quantify uncertainty in

the estimated parameters and due to the lack of information

sharing among various types of data in the inversion process. 

Stochastic inverse methods have been used recently to

combine multiple sources of geophysical data. For example,

Bosch and McGaughey (2001) developed a statistical model 

to jointly invert gravity and magnetic data for lithology

estimation with geologic constraints. Eidsvik et al. (2002) 

developed a Bayesian method to estimate facies, porosity,

fluid saturation, and density, using seismic AVO attributes 

and various types of borehole measurements. In those studies,

reservoir parameters as well as geophysical attributes at

unsampled locations were considered as random variables, 

and the Markov chain Monte Carlo (MCMC) methods (Gilks

et al., 1996) were used to draw samples from their joint

probability density functions (pdfs). The petrophysical or

rock physical relationships between the reservoir parameters 

and the geophysical attributes were enforced. Those methods 

provide a means to characterize uncertainty in parameter

estimation and allow multiple sources of information to be 

shared in the inversion process.

We develop a stochastic model to estimate  and Sw in this 

study, using borehole  and Sw measurements, seismic P- and 

S-wave travel time, and inverted  (Newman, 1995) from 

crosswell EM data. Figure 1 shows the relationships between 

the reservoir parameters and the geophysical attributes. 

Unlike conventional inversion, our stochastic inversion of 

seismic P-wave velocity links P-wave travel time, S-wave

travel time, and the inverted . Estimation of  and Sw

depends on borehole measurements, P- and S-wave travel 

time, and inverted . Although  is considered as data in the

current model, our ultimate goal is to consider it as a random

variable, conditioned to crosshole EM amplitude and phase

measurements.
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Figure 1: Relationships between reservoir parameters and

geophysical attributes. The rectangles represent data, the circles

represent random variables, the arrows represent dependence

relationships, and the lines represent mutual dependence

relationships.

Stochastic Model

Bayesian framework 

We combine various types of data using a Bayesian

framework. Consider a two-dimensional cross section, which 

is divided into m pixels and passed through by n seismic rays.

Let vectors , , , and S  be the unknown , SwS pS s w, and 

P- and S-wave slowness at the m pixels. Let vectors t and

be the P- and S-wave travel time of the n rays, and vector 

 be the inverted  at the m pixels. Let 

p

st

p , s , and c  be 

the inverse variances of the measurement errors of the P- and
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S-wave travel time and the inverted electrical conductivity.

Within the stochastic framework, all the unknowns are 

considered as random variables. Instead of seeking the best-

fitting values of the variables as with a deterministic inverse, 

our goal is to fully characterize uncertainty of each variable, 

such as its mean, variance, and probability density function. 

We begin by deriving the joint probability density function of

all the unknown variables. According to the Bayes’ theorem 

(Stone, 1995), the joint conditional pdf (also referred to as the 

posterior pdf) given P- and S-wave travel time and inverted 

electrical conductivity can be written as: 
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The first term on the right side is referred to as the likelihood 

function, and the second term is referred to as the prior pdf.

Conventional inversion methods minimize the misfit between 

modeled and measured data using the least square estimation

method, which is equivalent to the maximum likelihood 

method when the measurement errors have a multivariate

Gaussian distribution. The prior information is either ignored 

or partially combined implicitly. In this study, we explore the

posterior pdf, which explicitly combines information from

both the likelihood function and the prior. We draw samples 

from the pdf using the Markov chain Monte Carlo methods

and fully characterize uncertainty of each variable by

evaluating those samples. 

Likelihood function

The likelihood function is the link between unknown random

variables and given geophysical data. Consider that P- and S-

wave travel time has a direct connection with their

corresponding slowness and measurement errors, and  is a 

function of , Sw, and its measurement error, the likelihood 

function in Equation 1 can be written as follows: 
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Each term on the right side of the above equation can be

obtained using their corresponding forward models or 

petrophysical relations. Let M be the forward model of 

seismic tomographic data. The measured P- and S-wave

travel time thus can be written as: 

,)( pM pp St
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                                    (3) 

St sss                                      (4) 

Vectors p  and s  are the measurement errors of P- and S-

wave travel time, and both have the multivariate Gaussian

distribution with zero mean. Consequently, ),|( pf pp St  is 

the pdf of the multivariate Gaussian distribution with mean

and covariance matrix , and)( pSM nI
2/1

p ),|( sssf St

nI

.c

 is 

the pdf of the multivariate Gaussian distribution with mean

 and covariance matrix , where  is the n

dimensional identity matrix.
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The likelihood function of  is obtained using Archie's law 

(Archie, 1942). In log space, the relationship between 

porosity, water saturation, and electrical conductivity is linear

and given by:

))log()log( 10 ww w           (5) 

w w wCoefficients , , and  are determined from well log 

data. Vector 
0

c

1 2

 is the measurement or inversion error of log 

electrical conductivity and has the multivariate Gaussian 

distribution with zero mean and covariance matrix ,

where I is the m dimensional identity matrix.
m

m

Prior pdf

The prior pdf in Equation 1 summarizes the information that 

is not included in the above likelihood functions, such as 

borehole  and Sw measurements. As measurement errors of 

P- and S-wave travel time and electrical conductivity are 

often independent of , S , , and , we can write the 

prior pdf as follows: 
w S s

)(),,,,, csp ff ssp SSS (6)

The first term on the right side of Equation 6 is derived from 

borehole data. For example, we can expand it as follows: 
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Each individual conditional pdf is obtained from borehole 

data using regression methods. The prior pdf of  is 

obtained using geostatistical kriging by conditioning to

borehole porosity measurements. For the second term on the 

right side of the equation, we often have less information. In 

practice, we usually choose a prior for each of the variables

that has minimal effect on the analysis (Gilks et al., 1996). 

Sampling Method

The key to success of this stochastic inverse lies in the use of 

the Markov chain Monte Carlo (MCMC) methods. These

methods have recently been emerged as the main tools for

solving problems involving a large number of random 

variables. As the posterior pdf in Equation 1 is very

complicated, analytical methods cannot be used. Instead, we

use a MCMC method to draw many samples for each

variable. The method is different from the traditional Monte 

Carlo methods, which draw independent samples from 

conditional distributions. The MCMC method draws 

dependent samples by running a cleverly constructed Markov 

Main Menu

SEG International Exposition and Seventy-Third Annual Meeting Main Menu



Joint stochastic inversion

chain from given starting values (Gilks et al., 1996). The 

initially drawn samples depend on the starting values. 

Therefore, they are not used for inference in order to avoid

the bias in choosing the starting values. The remaining

samples are independent of the starting values and thus all are 

used for inference. The total number of runs needed and the 

number of the initial values discarded are determined by

convergence diagnosis methods (Gelman and Rubin, 1992).

We use the Gibbs sampling method (Gilks et al., 1996) to 

generate Markov chains in this study. The sampling method 

includes the following steps: (1) Defining likelihood

functions for given data and prior pdfs for random variables, 

(2) Deriving conditional pdfs for random variables, and (3)

Drawing samples from the conditional pdfs. The above

sampling process is repeated so that many samples are

obtained for each random variable. 

Case Study

We construct a synthetic dataset to demonstrate the 

performance of the stochastic inverse. The dataset was 

generated using well log data collected from two wellbores in 

the Lost Hills oil field in Southern California by Chevron 

Petroleum Company (Hoversten et al., 2002). A synthetic

reservoir interval was constructed between the two wells, 

separated by 150m. The  and Sw of the reservoir are shown 

in Figure 2. Our goal is to estimate  and Sw within the 

reservoir using direct measurements of  and Sw at each well, 

seismic P- and S-wave travel time, and inverted  on the 

interwell cross section. 

Figure 2: True  (a) and Sw (b)

We consider a cross section, which passes through the two

wellbores at depths 1175m to 1475m. We divide the two-

dimensional domain (150m  300m) into 1800 pixels with

the dimensions of 5m  5m. In addition to borehole  and Sw

data, we also collect seismic P- and S-wave travel time from

1600 source-receiver combinations between the two wells,

and electrical conductivity from inversion of a simulated 

crosswell electromagnetic experiment. Gaussian random 

noises were added to each type of data. The EM data are

assumed to have 3% noises. The P-wave travel time error is

equal to the 3% of the averaged P-wave travel time, and the 

S-wave travel time error is equal to the 5% of the averaged S-

wave travel time.

Figure 3: Estimated  (a) and Sw (b) using a regression model based

on the inverted P-and S-wave velocity and the inverted .

0.15

0.2

0.25

0.3

0.35

20 40 60 80 100 120 140

1200

1250

1300

1350

1400

1450

Figure 4: Estimated  (a) and Sw (b) using the stochastic inverse

based on the P- and S-wave travel time and the inverted .

Figure 3 shows the estimated values of  and Sw using the 

conventional approach. In this approach, P- and S-wave 

travel time was inverted separately to get P- and S-wave 

slowness using the ART algorithm (Peterson, 1985). The

models for predicting  and Sw from P- and S-wave slowness 

and  were obtained from data at the two wellbores using a

multivariate regression (Stone, 1995). For , the estimated

results capture the main patterns of the true values, that is, the 

 reduces from the left side to the right side, but they are

much smoother than the corresponding true values. For Sw,

the estimated results correctly predict the existence of a low 

Sw zone in the lower middle part of the reservoir, but 

underestimate the values at the left and the upper right sides

of the reservoir. 
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Figure 4 shows the estimated  and Sw using the stochastic 

inverse based on borehole  and Sw measurements, P- and S-

wave travel time, and inverted . Compared to Figure 2 and 

Figure 3, the estimated values of both  and Sw are better 

than the corresponding estimated values using the 

conventional approach in terms of overall patterns and 

resolution. A quantitative comparison between the estimated 

 and Sw using the traditional and stochastic methods is 

summarized in Table 1. The stochastic inverse gives smaller 

ranges of the estimated values, smaller prediction errors, and 

smaller mean differences over all the pixels. 

Table 1. Comparison of estimated  and Sw with the corresponding 

true values. The true  is in the range from 0.15 to 0.31, and the true 

Sw is in the range from 0.22 to 1.0. 

Traditional

Method 

Stochastic

Method 

Porosity ( )
     Range of values (0.17,0.32) (0.15,0.32) 

     Range of errors (-0.07,0.14) (-0.09,0.05) 

     Mean difference 0.021 0.017 

Water Saturation (Sw)

    Range of values (0.16,1.45) (0.22,1.05) 

    Range of errors (-0.54,0.63) (-0.39,0.54) 

    Mean difference 0.155 0.117 

Conclusions 

We developed a stochastic model for  and Sw estimation 

using multiple sources of geophysical data. The model has 

the following advantages over the deterministic method: 

Provide a means to quantify uncertainty in reservoir 

parameter estimation. Unlike the deterministic approach, 

which gives only one value for each unknown parameter, 

the stochastic inverse draws many samples from the joint 

conditional pdf of each variable. From the samples, we can 

calculate the mean, variance, confidence interval, and even 

probability density function of the variable. 

Allow various types of measurement and model errors to 

be considered in parameter estimation. The deterministic 

method typically cannot account for model errors and 

underestimates the effects of measurement errors. Our 

method considers both measurement and model errors as 

random variables, and they are estimated in the same way 

as the reservoir parameters.

Provide a better way to integrate multiple sources of 

information. The deterministic approach integrates various 

types of geophysical data after each individual inversion. 

This excludes information sharing among those data in the 

inversion process. The stochastic inverse estimates 

unknown reservoir parameters and geophysical attributes 

simultaneously.  
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